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Algorithm 1 Diagonal
Input: scene S, factor values F (N factors X k values)

for j « 1 to k do
f‘—an
for 1 « 1 to N do
fi('—Fj_j
end for
SETFACTORS(S, f)

COLLECTDATA(S)
end for
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Algorithm 2 L

Input: scene S, factor values F, base values f*

for i « 1 to N do
f « f* // Reset to base values
for j « 1 to k do
fi « Fij
SETFACTORS(S, f)
COLLECTDATA(S)
end for
end for
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Algorithm 3 Stair
Input: scene S, factor values F, base values f*

= - -
o f « f* // Initialize with base values

PP for j < 1 to k do
for i « 1 to N do
L fj_ — Fij
@ SETFACTORS(S, f)
COLLECTDATA(S)
end for
end for

Factor 1



Factor 2 Values

Factor 2 Values

Fig. 2: Visualization of our data collection strategies with N =
2 factors. Each axis consists of possible values for a factor. Each
green dot indicates that the strategy captures a specific combination
of factor values represented by it, and each pink dot represents a
combination that compositional generalization may address. We name
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our strategies based on the patterns in this visualization.
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Success Rate

Success Rate

Fig. 4: Simulation results of data collection strategies for Pick Place. We report results where F N consists of each possible factor pair
(N = 2), average results across all pairs, and results where F™ consists of all factors (N = 5). All points within the same subplot use
the same amount of demonstrations. The strategies that exploit composition (Stair, L, Diagonal) generally outperform Random, and often
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Fig. 5: (left) Compositional success rate of different strategies.
(right) Generalization of strategies with increasing dataset sizes.
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Data Strategy | L | No Variation
Train Method | Bridge | From Scratch | Bridge

Factor 2 | Object Container Table  Table | Object Container Table  Table | Object Container  Table  Table

Factor 1 Type Type Height Tex Type Type Height Tex Type Type Height Tex
Object Pos 8/9 5/9 2/9 5/9 0/9 0/9 0/9 1/9 3/9 2/9 1/9 1/9
Object Type 8/9 8/9 8/9 5/9 5/9 4/9 4/9 3/9 2/9
Container Type 5/9 6/9 4/9 6/9 2/9 3/9
Table Height 4/9 3/9 1/9
Overall | 59/90 | 28/90 | 22/90

TABLE I: Real robot pairwise composition results for our “put fork in container” task. When leveraging BridgeData V2 as prior data, a
policy is able to compose the factor values present in the L data to succeed on 59/90 compositional combinations of factor values. Without
prior data, the model is unable to compose nearly as effectively, with compositional success rate dropping by roughly half. Prior data alone
is also not enough to generalize to these situations, as a policy trained with prior data on No Variation also performs poorly.
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Data Strategy | L

| No Variation

Train Method | Bridge R3M VC-1

From Scratch | Bridge R3M VC-1

Object Type + | g9 19 o9 4/9 29 0/9 019
Table Tex

Object Pos +

i 59 09 09 1/9 9 09 0/
Object Pos +

Table Height | 20 19 0P 0/9 19 09 0/
Overall | 1527 2127 027 527 | 427 027 027

TABLE II: Additional real robot pairwise composition results for
our “put fork in container” task with R3M and VC-1.
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Data Strategy | [ Stair | L | No Variation
; Bridge Bridge From | Bridge Bridge From | Bridge Bridge
Train: Method (Co-FT) (FT) Scratch | (Co-FT) (FT) Scratch | (Co-FT) (FT)
No Further CompKitch | 4/5 4/5 0/5 5/5 0/5 0/5 0/5 0/5 CompKitch TileKitch
Changes TileKitch 5/5 215 o/s 5/5 5/5 3/5 0/5 0/5
Fork Down + | CompKitch | 45 4/5 0/5 3/5 0/5 0/5 1/5 /5
Blue Plate TileKitch 4/5 3/5 o/5 3/5 5/5 5/5 0/5 0/5
Wooden Fork + | CompKitch | 3/5 5/5 0/5 2/5 0/5 0/5 0/5 0/5
Pink Bowl TileKitch 4/5 3/5 0/5 3/5 5/5 2/5 0/5 0/5
Plastic Fork + | CompKitch | 4/5 0/5 0/5 1/5 0/5 0/5 0/5 0/5
Higher Table | TileKitch 3/5 0/5 0/5 2/5 0/5 1/5 0/5 0/5
CompKitch | 15/20  13/20 0720 | 11/20 020  0/20 120 0/20 ; .
Overall TileKitch 16/20 820  0/20 | 13/20 1520 11/20 | 020  0/20 CompKitch TileKitch
Combined | 31/40  21/40  0/40 | 24/40  15/40 11/40 | 1/40  0/40

TABLE III: Out-of-domain transfer results to new kitchens CompKitch and TileKitch. We find that varied in-domain data from BaseKiftch,
and BridgeData V2 as prior data, are both critical for effective transfer to these new kitchens. Stair outperforms L, although both achieve
significant levels of transfer. Co-fine-tuning generally performs better than only fine-tuning.
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