๐Ÿ“Œ Perceptron์— ๋Œ€ํ•ด ์•Œ์•„๋ณด์ž

Perceptron ๊ฐœ์š”

  • ๊ฐ€์žฅ ๋‹จ์ˆœํ•œ ํ˜•ํƒœ์˜ ์‹ ๊ฒฝ๋ง (Simpliest Neural Net)
  • ์‹ ๊ฒฝ๋ง : ์ธ๊ฐ„์˜ ๋‘๋‡Œ์˜ ์ž‘๋™ ๋ฐฉ์‹์„ ๋ฐ˜์˜ํ•ด ์ปดํ“จํ„ฐ๋ฅผ ํ•™์Šต์‹œํ‚ฌ ์ˆ˜ ์žˆ๋„๋ก ๊ณ ์•ˆํ•œ ๊ตฌ์กฐ

์•„๋ž˜ ๊ทธ๋ฆผ์€ ํ•˜๋‚˜์˜ ๋‰ด๋Ÿฐ์—์„œ ์‹ ํ˜ธ๋ฅผ ์ž…๋ ฅ๋ฐ›๊ณ  ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•˜๋Š” ๊ฐœ๋…์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.

๋‰ด๋Ÿฐ์€ ์ „๊ธฐ์‹ ํ˜ธ์˜ ํ•ฉ์ด ์ผ์ •์น˜ ์ด์ƒ์ด ๋˜๋ฉด ๋‹ค์Œ ๋‰ด๋Ÿฐ์œผ๋กœ ์‹ ํ˜ธ๋ฅผ ์ „๋‹ฌํ•œ๋‹ค.

์ถœ์ฒ˜ : https://www.ksakosmos.com/post/%EB%8A%90%EB%A0%A4%EB%8F%84-%EB%87%8C%EB%8A%94-%EC%BB%B4%ED%93%A8%ED%84%B0%EB%B3%B4%EB%8B%A4-%EB%82%AB%EB%8B%A4

โ‡’ ์ธ๊ฐ„์˜ ๋‡Œ๋Š” ๋‰ด๋Ÿฐ์„ ์ง€๋‹ˆ๊ณ  ์žˆ๊ณ  ๋‰ด๋Ÿฐ๋“ค์€ ์‹œ๋ƒ…์Šค๋ผ๋Š” ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด ์‹ ํ˜ธ๋ฅผ ์ฃผ๊ณ  ๋ฐ›์œผ๋ฉฐ ๋‹ค์–‘ํ•œ ์ •๋ณด๋ฅผ ๋ฐ›์•„๋“ค์ด๊ณ  ๊ทธ ์ •๋ณด๋ฅผ ์ €์žฅํ•˜๋Š” ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค.

Perceptron

image

  • Input(์ž…๋ ฅ๊ฐ’), Weight(๊ฐ€์ค‘์น˜), unit step function(Activation Function, ํ™œ์„ฑ ํ•จ์ˆ˜), Output(๊ฒฐ๊ณผ๊ฐ’, ์˜ˆ์ธก๊ฐ’)์œผ๋กœ ๊ตฌ์„ฑ
  • Hidden layer ์—†์ด Single layer๋กœ ๊ตฌ์„ฑ
    • Hidden layer (์€๋‹‰์ธต) : ์ž…๋ ฅ์ธต๊ณผ ์ถœ๋ ฅ์ธต ์‚ฌ์ด์— ์œ„์น˜ํ•˜๋Š” ๋ชจ๋“  ์ธต์„ ๋งํ•œ๋‹ค.
    • Input๊ณผ Output์‚ฌ์ด์˜ Weights, Weighted Sum, Activation Function์€ ๋ชจ๋‘ ํ•œ ๊ฐœ์˜ Layer์—์„œ ๊ณ„์‚ฐ๋˜์–ด Output์„ ๋„์ถœํ•œ๋‹ค.
  • Weighted Sum =
  • Weighted Sum์„ Activation์— ํ†ต๊ณผ์‹œ์ผœ Output ์‚ฐ์ถœ
  • Output์„ ํ†ตํ•ด ๋ถ„๋ฅ˜(Classification), ํƒ์ง€(Detection) ๋“ฑ์„ ์ง„ํ–‰ํ•œ๋‹ค.
  • ์˜ค๋กœ์ง€ unit step activation function์„ ์‚ฌ์šฉํ•œ ๊ฒƒ์„ ๋งํ•œ๋‹ค.


Perceptron์˜ ํ•™์Šต

  • Percetron์„ ํ†ตํ•ด ์‚ฐ์ถœํ•œ Output โ†’ O / ์‹ค์ œ๊ฐ’ Y
  • O์™€ Y๊ฐ€ ๊ฐ€์žฅ ๋น„์Šทํ•œ ๊ฐ’์ด ๋˜๋„๋ก ์กฐ์ •ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ํ•™์Šตํ•œ๋‹ค.

Process

  1. ์ตœ์ดˆ Weight๊ฐ’ ์„ค์ • (Weight Initialization)
  2. Perceptron Output ์‚ฐ์ถœ
  3. Output๊ณผ ์‹ค์ œ๊ฐ’์˜ ์˜ค์ฐจ ๊ณ„์‚ฐ
  4. ๋‘ ๊ฐ’์˜ ์ฐจ์ด๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๊ฒŒ Weight๊ฐ’ ๋ณ€๊ฒฝ (์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๋ณ€๊ฒฝ)
  5. ์ •ํ•ด์ง„ ๋น„์šฉ์•ˆ์—์„œ ์ตœ์ ์˜ ๊ฐ’์ด ๋  ์ˆ˜ ์žˆ๋„๋ก 2~4๋ฅผ ๋ฐ˜๋ณตํ•œ๋‹ค.


Regression(ํšŒ๊ท€)

  • ํšŒ๊ท€ : ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋…๋ฆฝ๋ณ€์ˆ˜ ์™€ ํ•œ ๊ฐœ์˜ ์ข…์†๋ณ€์ˆ˜ ๊ฐ„์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ชจ๋ธ๋งํ•˜๋Š” ๊ธฐ๋ฒ•

ex) = ์•„ํŒŒํŠธ์˜ ๊ฐ€๊ฒฉ

= ์ฃผ๋ณ€ ํ•™๊ตฐ, ์•„ํŒŒํŠธ ํ‰์ˆ˜, ๋ฐฉ ๊ฐœ์ˆ˜, ๊ทผ์ฒ˜ ์ง€ํ•˜์ฒ  ์—ญ ๊ฐœ์ˆ˜ โ€ฆ

: ๊ฐ ๋…๋ฆฝ๋ณ€์ˆ˜ ์˜ ๊ฐ’์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ํšŒ๊ท€ ๊ณ„์ˆ˜(Regression coefficients)

๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์—์„œ ํ•™์Šต์„ ํ†ตํ•ด ์ตœ์ ์˜ ํšŒ๊ท€ ๊ณ„์ˆ˜๋ฅผ ์ฐพ์•„๋‚ด๋Š” ๊ฒƒ์ด ํ•ต์‹ฌ์ด๋‹ค.

ํผ์…‰ํŠธ๋ก ์˜ ํ•™์Šต๊ณผ ํšŒ๊ท€ ํ•™์Šต ๋ฐฉ์‹์ด ๋ชจ๋‘ ๊ฐ™๋‹ค.



๊ธฐ์ดˆ ๋”ฅ๋Ÿฌ๋‹ ์šฉ์–ด ์ •๋ฆฌ

  • ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ(Hyperparameter) : ์‚ฌ์šฉ์ž๊ฐ€ ์ง์ ‘ ์ง€์ •ํ•˜์—ฌ ๋ชจ๋ธ์„ ํ›ˆ๋ จ์‹œํ‚ค๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ex) ํ•™์Šต๋ฅ , ๋ฐฐ์น˜ํฌ๊ธฐ ๋“ฑ

  • ์ง€๋„ํ•™์Šต(Supervised Learning) : ์ •๋‹ต์ด ํฌํ•จ๋œ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šต ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๊ณ  ์ •๋‹ต์„ ํ†ตํ•ด ํ‰๊ฐ€๋ฅผ ์ง„ํ–‰ํ•˜๋Š” ํ•™์Šต์„ ๋งํ•œ๋‹ค.

  • ๋น„์ง€๋„ํ•™์Šต(Unsupervised Learning) : ์ •๋‹ต์ด ํฌํ•จ๋˜์ง€ ์•Š์€ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ํŒจํ„ด์ด๋‚˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ์ฐพ์•„๋‚ด๋Š” ํ•™์Šต์„ ๋งํ•œ๋‹ค.

  • ๊ณผ๋Œ€์ ํ•ฉ(Overfitting) : ๋ชจ๋ธ์ด ํ›ˆ๋ จ์„ธํŠธ์— ๋„ˆ๋ฌด ์ ํ•ฉํ•ด์ง„ ์ƒํƒœ๊ฐ€ ๋˜์–ด ์ผ๋ฐ˜์„ฑ์ด ๋–จ์–ด์ง€๋Š” ํ˜„์ƒ ํ›ˆ๋ จ์„ธํŠธ์™€ ํ…Œ์ŠคํŠธ์„ธํŠธ์˜ ์ ์ˆ˜์ฐจ์ด๊ฐ€ ๋งŽ์ด๋‚˜๋Š” ๊ฒฝ์šฐ ๊ณผ๋Œ€์ ํ•ฉ์ด๋ผ ํ•œ๋‹ค.

  • ๊ณผ์†Œ์ ํ•ฉ(Underfitting) : ๋ชจ๋ธ์ด ํ›ˆ๋ จ์„ธํŠธ์—๋„ ์ ํ•ฉํ•˜์ง€ ์•Š๊ณ  ํ…Œ์ŠคํŠธ์„ธํŠธ๋„ ์ ํ•ฉํ•˜์ง€ ์•Š๋Š” ํ˜„์ƒ ํ›ˆ๋ จ์„ธํŠธ, ํ…Œ์ŠคํŠธ์„ธํŠธ ๋ชจ๋‘ ํ‰๊ฐ€์ ์ˆ˜๊ฐ€ ๋‚ฎ๊ฑฐ๋‚˜ ํ…Œ์ŠคํŠธ์„ธํŠธ๊ฐ€ ํ›ˆ๋ จ์„ธํŠธ๋ณด๋‹ค ์ ์ˆ˜๊ฐ€ ๋†’์€ ๊ฒฝ์šฐ์— ๊ณผ์†Œ์ ํ•ฉ์ด๋ผ ํ•œ๋‹ค.